GÉOLOGIE STRUCTURALE. — Mise au point sur la structure et l’évolution géodynamique de la partie centrale du Massif des Maures. Note (*) de Monique Seyler et Gilbert Crevola, présentée par Maurice Roques.

Les micaschistes et les amphibolites mésozoïques des Maures occidentales sont superposés normalement aux formations gneissiques et migmatitiques des Maures orientales et ne constituent pas une lame blastomylonitique précoce séparant deux blocs sialiques. Ces faits, ainsi que l’absence de reliques paléogéologiques dans les Maures occidentales et les affinités continentales des métavolcanites, infirment l’hypothèse d’obduction et de collision continentale récemment proposée.

STRUCTURAL GEOLOGY. — Clarification of the Structure and the Geodynamic Evolution of the Maures, Central Region (Southeastern France).

The western Maures’ medium-grade micaschists and amphibolites overlie the gneissic and migmatitic formations of the eastern Maures. They do not form an early blastomylonitic slice dividing two sialic blocks. These facts, like the lack of eclogitic relics in the western Maures and the continental affinities of the metavolcanics, cancel out the obduction and continental collision pattern, for the Massif des Maures.

La partie centrale du Massif des Maures (zone située entre la bande des gneiss de Bormes et l’axe granitique du Plan de la Tour) apparaît comme une zone clé pour la connaissance de la structure et de l’évolution géodynamique du socle provençal (fig.). En effet, dans cette zone, aux séries occidentales mésozoïques à dominante micaschisteuse et amphibolitique succèdent les séries orientales gneissiques et migmatitiques de type Tanneron et Massif de Sainte-Maxime. De plus, il faut souligner l’importance, en tant que marqueur géologique, des métavolcanites auxquelles sont associés des petits massifs de métagabbros et de serpentinites.

De nombreux travaux ont été consacrés à cette zone ([1] à [5]) et plusieurs modèles structuraux y font référence ([3], [5], [6], [7]). Si les modèles classiques ([3], [5], [6]) ne concernent que les rapports des séries occidentales et orientales, en revanche, le récent modèle de Bard et Caruba [7] est une interprétation de l’évolution géodynamique régionale en termes d’obduction et de collision continentale, conformément à des modèles récemment proposés pour la chaîne hercynienne d’Europe ([8], [9], [10]).

Les résultats de nos travaux dans la partie centrale et orientale du socle provençal ([11], [12]), ainsi que l’étude critique des données antérieures, montrent que les principales hypothèses sont en désaccord avec les données de terrain et de laboratoire et nous conduisent à présenter des éléments pour une interprétation différente de la structure et de l’évolution géodynamique de cette région.

STRUCTURE. — La zone étudiée, prolongée dans le Tanneron par les gneiss situés à l’Ouest et au Nord du granite du Rouet [11], correspond au flanc occidental d’une vaste structure anticlinale décakilométrique coiffée, d’axe nord-sud, de l’anticinal du Plan de la Tour — Rouet [13]. Cette structure est rapportée à une phase tardive post-schisteuse et post-métamorphique (phase 3) qui replisse et met en forme les schistosités et les pils de la deuxième phase isoclinale ([13], [14], [15]). En effet, les pendages, très redressés au voisinage de l’accident de Grimaud, tantôt vers l’Est, tantôt vers l’Ouest, s’atténuent progressivement en allant vers l’Ouest. En aucun cas il n’existe de disposition des pendages en éventail par rapport à un axe anticinal situé à l’Ouest de l’accident de Grimaud comme cela a été suggéré [7].

Des coupes schématiques et synthétiques (fig.) montrent que les formations qui se succèdent d’Ouest en Est peuvent être regroupées en trois grands ensembles :

— un ensemble inférieur, formé essentiellement par des gneiss plagioclasiques micacés
(métagrauwickes, à lentilles de gneiss calciques) et par des orthogneiss (type Jaumet) dérivant d’anciens granites à cordiérite et grenat [14]. Localement cette série a été migmatisée au cours de la phase 1; elle est également intrudée par des filons et des stocks apliitiques plissés et métamorphisés par la phase 2. Cette série est lithologiquement identique aux gneiss migmatisiques orientaux des massifs de Sainte-Maxime et du Tanneron [13]. Des niveaux d’amphibolites à serpentinites associées y sont intercalés;

— un ensemble supérieur, correspondant aux micaschistes mésozoïques occidentaux; il renferme un groupe d’ortholeptytnites roses associées à des amphibolites et des métagabbros [16], ainsi que d’autres niveaux d’amphibolites et serpentinites;

— l’ensemble des orthogneiss de Bormes, constituant des bandes de dimensions variées intercalées dans les micaschistes mésozoïques. Proches des orthogneiss de l’ensemble inférieur, leur intercalation dans les micaschistes paraît être d’origine tectonique.
Les contacts entre les diverses formations sont soit d'origine stratigraphique, soit tectoniques (failles normales ou accidents tardifs chevauchant vers l'Est). Les différents ensembles lithologiques sont disposés en bandes régulières. Il n'existe aucun indice de contacts anormaux ductiles, plats, replissés, de grande ampleur, ni de dispersion ou de mélange tectonique.

Par ailleurs, il faut souligner les points suivants :

1. Il n'existe pas de passage par accroissement du métamorphisme entre les amphibolites et les micaschistes de type Maures occidentales d'une part, et les gneiss migmatitiques de type Maures orientales d'autre part [5]. Ces deux ensembles sont en contact franc. Leur lithologie et leur chimisme sont différents. Cette différence de lithologie, à laquelle se superpose une variation rapide du degré de métamorphisme, ainsi que la présence d'une discordance cartographique entre les deux ensembles nous inciterait à voir ici une superposition de type socle-couverture.

2. Contrairement à ce qui a été proposé [7], l'ensemble supérieur n'appartient pas à une lame blastomylonitique chevauchante provenant de la base des migmatites orientales. Bien au contraire, les micaschistes à intercalations d'amphibolites sont normalement superposés aux gneiss migmatitiques.

3. L'importance de l'accident de Grimaud et de son prolongement dans le Tanneron, l'accident de Joyeuse, a, semble-t-il, été surestimée. Sa position au flanc ouest de l'anticlinal Plan de la Tour — Rouet lui permet, en effet, malgré son faible rejet, de mettre localement en contact l'ensemble mésozoïque supérieur avec l'ensemble migmatitique inférieur. Son rôle n'est pas différent de celui d'autres accidents N-S du socle provençal.

Nature et signification géodynamique du paléomagmatisme. — La formation leptyno-amphibolitique principale est caractérisée par une association bimodale de métavolcanites à composition de basaltes transitionnels et de rhyolites alcalines à affinité comenditiq (16], [17]) dans lesquels sont intrusifs des gabbros à valeur de cumulats [18]. Par ailleurs, des amphibolites à composition de basaltes transitionnels et tholéítiques, associés à de petits massifs de serpentinites, représentent d'anciens sills et filons intrusifs à différents niveaux de la série stratigraphique des Maures et du Tanneron. Ils présentent des reliques écologiques dans la série migmatitique orientale.

La signification des amphibolites a été discutée par plusieurs auteurs ([16], [19], [20]). En particulier, pour Bard et Caruba [7], qui s'appuient sur des travaux antérieurs ([14], [16], [20]), il s'agit de tholéites à affinités océaniques ou d'arc insulaires. Or, les travaux utilisés ont conclu au caractère continental de ces métatholéites.

Il nous paraît plus probable que ce paléomagmatisme corresponde à des mouvements de distension d'ampleur limitée affectant un continent. Un processus de rifting aurait avorté précocement, avant d'atteindre le stade de bassin d'extension sur croûte amincie.

Évolution tectonométamorphique. — Aucune relique indubitable de roche à faciès granulite ou éclogitique n'a été jusqu'ici décrite dans la série occidentale ([18], [21]). En revanche, des éclogites et probablement des granulites rétromorphosées, existent dans la zone migmatitique orientale (Tanneron, massifs de Sainte-Maxime et de Saint-Tropez ([11], [13], [15], [22]). Les éclogites, comme dans d'autres parties du socle hercynien [23], sont comprises dans la zone migmatitique et il n'existe pas, ici, d'éclogites « expatriées » dans le domaine mésozoïque.

On observe, dans cette zone comme dans le reste du socle provençal, la succession désormais classique de trois phases tectonométamorphiques principales ([13], [14], [15]).
Les deux premières phases, d'axes voisins, sont synschisteuses et symétramorphiques. Si les mégastructures liées à la phase 1 n'apparaissent pas clairement, en revanche la phase 2 est responsable de la structuration des séries en plis sub-isoclinaux hextométriques. Deux faits méritent d'être précisés : dans l'ensemble inférieur, la migmatisation est liée à la phase 1 et non à la phase 2 [5], les mobilisats et les filons sécants étant replissés par la deuxième phase. La blastomylonitisation est liée à la deuxième phase [13] et non à la première phase [7]. Elle affecte, à des degrés divers, la partie orientale du socle provençal depuis Mandelieu, à l'Est, jusqu'au méridien de la Forêt des Arcs. L'étirement maximal des objets antérieurs se réalise suivant l'axe des plis P2 d'orientation généralement N-S, caractère qui l'oppose à celui qui caractérise la déformation des tectonites engendrées dans les grands chevauchements synschisteux de type hymalayen [24].

La troisième phase, dont le rôle structural majeur a été évoqué plus haut, est une phase tardive post-schisteuse. Divers indices montrent qu'un métamorphisme thermique tardif pourrait lui être lié ([11], [14]).

Conclusion. — La série lithostratigraphique peut se subdiviser en deux grands ensembles superposés : l'un, supérieur et mésozonal, de type occidental contenant des micacisques et des amphibolites associées à des ortholepytines, l'autre, inférieur, gneissique et migmatisée, de type oriental, dont la continuité avec les formations du Massif de Sainte-Maxime n'est pas interrompue par l'accident de Grimaud, la limite entre les deux ensembles pourrait revêtir le caractère d'une limite socle-couverture.

L'autochtonie, la continuité et la position relative des deux ensembles, l'absence de reliques écologiques dans le domaine mésozonal, la nature continentale du paléomagmatisme et la place de la blastomylonitisation, infirment le modèle d'obduction et de collision continentale récemment proposé [7].

(*) Remise le 21 juin 1982.

M.S. : Département de Géologie, Faculté des Sciences, Université de Dakar, Sénégal et E.R.A. C.N.R.S. no 805:
G.C. : Institut de Géodynamique, Université de Bordeaux III, avenue des Facultés, 33405 Talence Cedex.